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Nonlinear resonance of free surface waves 
in a current over a sinusoidal bottom: 

a numerical study 
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We examine the free surface flow over a fixed bed covered by rigid sinusoidal dunes. 
The mean current velocity is near the critical value at which the linearized theory 
predicts unbounded response. By allowing transients we examine the instability of 
the steady and nonlinear solution of Mei (1969) and the possibility of chaos when 
the current has a small oscillatory component. 

1. Introduction 
The problem of dune formation and migration on a river bed has long fascinated 

hydraulicians. Scientific efforts in the last thirty years owe much to the seminal 
work of Kennedy (1963) who studied the instability of long-crested sand dunes under 
various regimes of steady flow. Assuming potential flow in the running stream he 
accounted for the sediment motion by an empirical transport rate formula, with an 
additional hypothesis of a phase shift between the sediment transport rate and the 
propagation speed of the sand dunes. Since the sand dunes evolve very slowly in 
time, the bed was treated as being fixed and the flow above steady. Specifically for a 
sinusoidal bed 

B = bcoskx (1.1) 
over a mean depth h, with b / h 4 l ,  the linearized potential theory gives the following 
free surface displacement : 

kb cos kx ' = k cosh kh - ( g / U 2 )  sinh kh 

(Lamb 1932). There is a critical velocity Uo defined by the zero of the denominator 
in the preceding equation: 

U i  = -tanhkh. 

When the flow is subcritical, i.e. U < U,, the free surface and the bed waves are 
opposite in phase, the corresponding bed waves are called dunes. On the other hand, 
when the flow is supercritical, i.e. U > Uo, the free surface and the bed waves 
are in phase, the bed waves are called the antidunes. When U = UO, however, 
the surface wave becomes unbounded for a prescribed bed wave amplitude. To 
avoid unbounded response, Lamb (1932) suggested that viscous damping should be 

(1.3) 
g 
k 



378 P. Sammarco, C. C. Mei and K.  Trulsen 

introduced. Kennedy (1963) suggested that, since the free surface amplitude cannot 
be infinite, either the sand dune amplitude must diminish to zero, as is often observed 
in the regime of critical flow, or else the flow must not remain steady for fixed 
dunes. 

Unboundedness in the linear theory of course implies resonance. Indeed UO is 
precisely the phase velocity of a free surface wave of wavenumber k over a horizontal 
bottom. In the coordinate system moving with the current, the bed is a sinusoidal 
progressive wave advancing at the speed U .  Clearly if U is equal or close to 
the phase velocity of a free surface wave of the same wavenumber, resonance is 
expected. To remove the unphysical singularity, Mei (1969) resorted to nonlinearity 
and modi6ed the Stokes wave theory for a horizontal bottom to one for a rigid 
sinusoidal bottom. The free surface was taken to be steady relative to the wavy 
bed. For certain range of U near UO, the free surface wave amplitude can be triple- 
valued; the relation between the equilibrium amplitude and the velocity departure 
from resonance is cubic, as in the Duffing problem in nonlinear oscillators. An 
instability analysis is needed to decide which of the triple roots is likely to occur in 
nature; this was however not carried out by Mei. A similar steady-state analysis has 
been reported recently by Zhu (1992) for a uniform flow in a horizontal channel of 
rectangular cross-section with sinusoidally varying sidewalls. The related instability 
problem for a stationary interfacial wave over a fixed wavy bed has now been studied 
by Miles (1986). By adding a simple dissipation term in the transient evolution 
equation he found Hopf bifurcations which give rise to limit cycles and period 
doublings. Bontozoglou, Kalliadasis & Karabelas (1991) have recently reported 
exact numerical solutions to the fully nonlinear potential theory of steady free 
surface flows over a wavy bed. For sufficiently small wave steepness, their numerical 
computation of the synchronous resonance branches is shown to agree with the 
undamped limit of the weakly nonlinear theory of Miles. By parametrically varying 
the current specd U ,  the authors have also given numerical evidence of subharmonic 
resonances, where the surface wave is one half and one third as long as the bed 
wave. 

In this paper we shall extend the earlier works on surface waves on a current over 
a wavy bed. In particular, we shall examine the initial stability and the long-time 
evolution of weakly nonlinear waves resonated by the bed. The dunes are assumed 
to be rigid, of uniform amplitude, and infinite in numbers, extending to infinities 
in both upstream and downstream directions. As usual in weak resonance theo- 
ries, the waves are expected to be modulated slowly. The slow evolution equation 
for the complex amplitude of the surface wave is deduced by first allowing mod- 
ulations in both time and space. Analytical and numerical studies are limited to 
the simpler case of time modulation, so that the dynamical system involves only 
ordinary differential equations. For a steady current the dynamical system is au- 
tonomous and reducible to that governing the Duffing oscillators (Jordan & Smith 
1986), or the resonant bubble response induced by oscillating sound pressure (Hall 
& Seminara 1980). 

Principal attention will be directed to the effect of a small oscillatory component in 
the incident current. The evolution equation is then changed to a non-autonomous 
dynamical system of the second order; chaos is now possible. Mathematically our 
problem is ultimately reduced to a Duffing problem with periodic forcing and coeffi- 
cients (see e.g. Yagasaki, Sakata & Kimura 1990). Our objectives here are to examine 
numerically the development of chaos as a function of the physical parameters and 
its physical implications. Both synchronous and subharmonic resonances will be 
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discussed here. Dissipation by viscosity, as well as slow modulations in space, both 
of which can be important in nature, are left for future studies. 

2. Derivation of evolution equations by multiple-scales analysis 
We consider a nearly horizontal river bed described by z = -h + B ( x )  where h is 

the constant mean depth and B(x) the dune height above the mean bottom. Let U 
be the velocity of a uniform current in the absence of dunes and u be the disturbance 
velocity due to the dunes. The flow is assumed to be irrotational so that the total 
potential Q, and the disturbance potential 4 are related by 

@(x, z ,  t )  = u x  + $(x, z ,  t), 

and u = V4. The disturbance potential is governed by 

4xy + 4 z z  = 0. (2.2) 

On the free surface, z = [(x,t), the dynamic boundary condition is just the Bernoulli 
equation: 

while the kinematic and dynamic boundary conditions can be combined to give 
gc + 4t + u4, + ;lul? = 0, z = C(x,t); (2.3) 

4tt + g4z + u: + i~ Vu2 + U2$xx + 2U4,t + UU; = 0, z = C(X, t), (2.4) 

where on the bottom z = -h + B the kinematic boundary condition requires 

4 z  = B X W  + (2.5) 

We now extend Mei (1969) by allowing unsteadiness in addition to nonlinearity. 

expansion of the free surface boundary conditions (2.3) and (2.4) gives respectively 
We shall assume both c = O(A) and B = O(b) to be small compared to l /k .  Taylor 

d+4t + u4x + ;luI2 + i ( 4 t z  + u 4 x 2  + 4 X 4 X Z  + 4 2 4 z z I  
+iC2 (& + U 4 x z z )  + * - * = 0 (2.6) 

and 

4 t t  + g42 + u24, + 2u4,, + uu; + u: 

+c (4m + g 4 z z  + U2&X2 + 2u4,t2 + uuf, + 4J + Vd 
+;C2 ( 6 t t z z  + g 4 z z z  + U24xx2z + 2U&tzr + UU%, + u:,~) + . . . = 0. (2.7) 

Similarly, Taylor expansion of the kinematic boundary condition about z = -h gives 

42 + B422 + ;B24zzz + . . * = Bx( u + 4x + B4x2 + ;B24xzz + . . *). (2.8) 
We now introduce the small parameter e = kA+l which represents the small wave 
steepness, and assume kb+l to be no greater than O(e). As our attention will be 
focussed on the neighbourhood of resonance, slow growth in time is expected. For 
generality, we introduce slow coordinates in both time and space as follows: 

2 

2 
x, x1 = f X ,  x2 = E x, ...) 

tl = et, t 2  = e t ,  .... 
Let us assume multiple-scale expansions for both 4 and [ :  
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c = c F n L L ( x ,  XI ,  x2,. . . ; tl, t 2 ,  * * .), (2.10) 
n= 1 

and allow the incident current velocity U to be slightly detuned from resonance: 

U =  Uo+eU1+€2U*+ .... (2.11) 

We also expand B as follows: 

B = C e"B,(x, XI, ~ 2 . .  .). (2.12) 
n=l  

Substituting expansions (2.9), (2.10), (2.1 l), (2.12) into (2.2) and (2.6), (2.7), (2.8), and 
following the standard procedure, we obtain a sequence of perturbation equations. 
Only the results from the bottom boundary condition are recorded below: 

41z = U0Blr, (2.13) 

42z = Uo(B2x + BIA, 1 + Blx(U1 + 4lJ - B141zz, (2.14) 

4 3 2  = UO(B3, + B2,, + Blx,) + B2,(U1 + $ j y )  + UlBl *I  

+ BI,(UZ + 4zr + 4 ~ ,  + B1$lrz) - (B142~~ + B241 E -  + i@4iT.) .  I"* (2.15) 

We shall consider resonances resulting in a free surface wave proportional to 
e exp (fikx) at O( e )  and a uniformly valid theory involving terms no higher than 
O( E~ ). It will now be shown that through quadratic and cubic nonlinearities, reso- 
nance can be accomplished by a sinusoidal bottom proportional to any one of the 
harmonics : 

e*lphx, p = (i, i, I, 2,3) . (2.16) 

The corresponding resonance will be called synchronous if p = 1, superharmonic if 
p = $,  i, and subharmonic if p = 2,3. 

We consider the interaction between the free surface wave of displacement 

@ekX + *) (2.17) 

and bed waves of different magnitudes and harmonics, with a view to obtaining the 
evolution equation for A from the solvability conditions for eA elh + * ; the * indicates 
the conjugate quantity. For each case, we itemize below the type of resonance in 
(a), and the bed wave form in (b). The terms arising from quadratic nonlinearity are 
listed in (c). The coefficients of the first harmonic elkx of all 0(e3)  terms due to cubic 
nonlinearity are then given in (d ) .  From the solvability condition, the expected final 
evolution equation for A is of the following general type 

The right-hand side F will be listed in (e) .  
Case 1 :  

(a )  Synchronous resonance ( p  = l), 
(b )  e3 (beikx + *) , 
(c )  e2 ( I A ~ ~ ,  A2e2*x + *), 
( d )  e3 ((IAl2A, h, A, aA/at,, d ~ / d ~ )  ekx + *), 
(e)  6 b. 

(2.18) 
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Case 2: 
(a )  Subharmonic resonance (p = 2), 
(b)  e2 (b  e21kx + *), 
(c )  e2 ( I A I ~ ,  A2e21kx + *) , 
( d )  e3 ( ( I A ( ~ A , A , ~ A / ~ ~ ~ ,  &1/dx2) elkx + *), 
(e) 6A* b. 

(a)  Subharmonic resonance (p = 3), 
( b )  E (e3kx + *), 
(c) e2 (lA12, lbl2, A2e21kx, b2e61kx, bA' e21kx + *) ,c3 (bA'2elkx + *), 
( d )  f 3  ( (lAI2 A, A, dA/i?t2, dAldx2, (bI2 A, A"2b) elkx + *), 
( e )  6A*2b + XAlb12 . 

(a) Superharmonic resonance ( p  = i), 
( b )  e3j2 (b  elkXj2 + *) , 
(c) e2 ( IAI2, A2 e2Ikx + *) , E ~ / ~  ( A  b e3kx/2, A b*e1kk'/2 + *) , e3 (b2ekx + *), 
( d )  e3 ( (IAI2A, AlbI2, b2, A, dA/dt2, d A / d x ~ )  elkX + *), 
( e )  6AjbI2 + xb2. 

(a )  Superharmonic resonance (p = i), 
( b )   be^^/^ + *), 
( d )  e3 ((IA12A, A,  lbI2A, b3, d A / d t 2 ,  dAIdx2) elkx + *), 
( e )  6Alb12 + xb3. 
In summary, the evolution equations are of the cubic Schrodingcr type with addi- 

tional terms involving the bed wave amplitude. We note that the two superharmonic 
cases are similar in form to the synchronous case as far as A is concerned. Hence the 
dynamics are mathematically similar. In this paper, we shall examine the synchronous 
and the ( p  = 2) subharmonic cases in detail. With the nth-order terms expanded into 
harmonics as follows : 

e3 (bA*elkX + *) , 

Case 3 :  

Case 4: 

Case 5 :  

( c )  e2 @ I 2 ,  lbI2, A2 e2Ikx, b2 e21kx/3, A h e41kx/3, A b* e2lkxj3 + * 1, 

> (2.19) 

m=-n 

we find that, at the nth order, the mth harmonic &m is governed by a boundary value 
problem in the vertical coordinate z .  The first-harmonic problem is homogeneous at 
the first order but inhomogeneous at higher orders. Invoking solvability at the second 
and third orders yields the evolution equations for the amplitude of the homogeneous 
solution. The procedure is standard, as illustrated in Mei (1989) for a horizontal 
bottom. Therefore only the key results are presented here. 

Thus far the different resonant wavenumbers of the dunes have been identified 
for the same the free surface wavelength, hence the same resonant current speed Uo. 
Conversely, for a fixed dune length 271/K, the resonant current speed is found from 

g K h  
K P 

U i  = p-tanh-, p = (i, i, 1,2,3), 

13 F L M  279 
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while the corresponding wavenumber of the resonant free surface wave is K / p .  Thus 
for larger p ,  the resonant current speed is higher and the free surface wave is longer. 

2.1. Synchronous resonance 
Synchronous resonance can be excited by a sinusoidal bottom two orders of magnitude 
smaller than the free surface: 

(2.20) B = e3 B3 = e3($beikx + 9) with b = b(x1, x2,. . .); B1 = B2 = 0. 

Let the current be 

u = uo + f 2  U2(t2), (2.21) 
where U, is the constant critical speed and U2 is the prescribed detuning from 
resonance at O( e2). The first-order solution is then 

(2.22) 
igA cosh k(z + h) eiGx 

cosh kh + *, $1 = $10 (XI, x2,. . . ; t l ,  t 2 , .  . .) + 
and 

[ 1 - 3  - l A e i k X  + *, (2.23) 
where the free surface amplitude is a function of the slow variables A = A 
(XI, x2, ...; tl, t2, ...). At the second order, solvability for the first harmonic gives 

A,, + UO( 1 - n)Ax, = 0, (2.24) 

where 

n = -  1 + -  
2 ( sin?:kh) 

(2.25) 

is the ratio of group velocity to phase velocity for a progressive wave in non-flowing 
water of constant depth h. At the third order the zeroth harmonic must be subject to 
a solvability constraint: 

gk IAI:l = 0 (2.26) 
kh ) + 2tanh kh 

+ @ (3cothkh- ~ 

4 cosh2kh 

which describes a long wave induced by the slow variation of the free surface 
amplitude. At the same order 0(e3), the sohability condition for the first harmonic 

2kh(sinh2kh - 1) 1 + khtanh kh 
2k k Ax,,, iUO(1 - n)Ax, = -- 1 + 

2 UO [ 2Uocosh2kh 

uo [ sinh2kh 
I h o , ,  + U04lOx, 

-A,,,, + k u2 + 

b. (2.27) k3 Uo 2 3( 1 + 2cosh2kh) k UO + 8  IAI2A- -- 
16 [ cosh2kh + sinh4kh ] 2coshkh 

Equations (2.26) and (2.27) form a system which couples the evolutions of $10 and A. 
Since from (2.24), 

(2.28 j 4 t l  = UiCl - nj2Ax1x1, &,t, = -Uo(l - n)&lxk, 
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(2.27) may be rewritten 

k2h2 2kh 
]At? + iUo(l - njA,, = -- n2 + ~ - 

2k Uo ( cosh2kh sinh2kh 

41o,, + Uo41ox, 

2Uocosh2kh 
+ k  [U2+ 

+ 8  lA12A- kUo b. (2.29) 
k3Uo 2 3( 1 + 2cosh2kh) -- ~ 

16 [cosh'kh + sinh4kh ] 2coshkh 

Equations (2.26) and (2.29) may be used to study the slow evolution over a large but 
finite number of bars when the incident current is slowly varying in time. In the limit 
of no modulation, i.e. strict uniformity in time and space, (2.29) reduces to that of 
Mei (1969). Note that the last term represents forcing of the surface wave by the 
dunes. 

In this paper we shall restrict ourselves to infinitely many dunes of spatially uniform 
amplitude, i.e. b is independent of x i  and x2. It will also be assumed that there is 
no spatial modulation in A with respect to coordinates x1,x2. It then follows from 
(2.24) that A,, = 0. From (2.26) $10 is then decoupled from A,  hence 410r, is at most a 
constant and may be absorbed by U2 without loss of generality. Thus the evolution 
equation (2.29) is simplified to an inhomogeneous Stuart-Landau equation : 

+ 8  IAI2A - kUu b, (2.30) 1 2cosh kh 
k3 Uo 2 3( 1 + 2cosh2kh) 

ill, = k U l A - -  ~ 

16 [ cosh2kh + sinh4kh 

which is of the form anticipated in (2.19) and will be analysed later in 9 3 and 4. 

2.2. 112 subharmonic resonance 

Here we assume 

2 B = e B2 = + *) with b = b(x1,x2, ...); Bl = B3 = 0. (2.31) 

The first-order solution (2.22), (2.23), as well as the solvability conditions for 421 

and 43" (2.24) and (2.26) still hold. Consequently (2.28) remains true. At O(e3),  the 
solvability condition for $31 can be rearranged, by making use of (2.28), to yield the 
following evolution equation : 

Ax1,x1 
k2 h2 

n + ____ - ~ 

2k uo ( cosh2kh sinh2kh 
vl,, + Uo(1- n)Ax2 = -- 

410r1 + UO$lO,, 

+ k  [U2+ 2Uocosh2kh 

+ 8  1 ~ 1 ~ ~  1 k3uO 2 3( 1 + 2cosh2kh) -- ~ 

16 [cosh'kh' sinh4kh 

1 - 2sinh2kh)(tanhkh + '>I A*b, (2.32) 
tanh2kh 

which differs from (2.29) in the last term proportional to b. 

above evolution equation reduces to the following Stuart-Landau equation : 
Again for strictly constant dune amplitude there is no spatial modulation and the 

13-2 
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+ 8  I A I ~ A  1 k3U0 2 3( 1 + 2cosh2kh) 
i A t Z  = kU2A- - ~ 

16 [cosh’kh + sinh4kh 
1 

1 - 2sinhzkhj(tanhkh + L j ]  A’b (2.33) 
tanh2kh 

as expected for Case 2. A similar evolution equation has been deduced before by Hall 
& Seminara (1980) for the subharmonic resonance of a bubble in an acoustic field. In 
their case all coefficients are constants and the equation has been solved analytically. 

Although the mathematical results for the autonomous case of constant U2 are in 
principle known, we shall recount the key results in order to bring out the physical 
implications of various bifurcations and to provide background for studying the 
non-autonomous case. 

3. Steady incident current 

For constant U2, equation (2.30) can be non-dimensionalized as follows : 

3.1. Synchronous resonance 

b‘ = kb, (3.1) 

kA, (3.2) 
3( 1 + 2cosh2khj + 8]  } 1’3 

sinh4kh 

(3.3) 
bl2 2 3(1 + 2cosh2kh) + 8]}1’3 

k Uot2 
= { 4cosh’kh [a + sinh4kh 

By separating the real and imaginary parts: A’ = X + iY, we obtain a second-order 
autonomous dynamical system : 

x, = a Y  - (X2+ Y 2 ) Y ,  

Y, = -ox + (X2 + Y2)X + 1, 
(3.4) 
(3.5) 

where 

(3.6) 
2 3(1 + 2cosh2khj + 8 1 ~ - 1 / 3  - u2 

sinh4kh UO 
+ bl2 

a = { 4cosh2kh [a 
is the bifurcation parameter representing the velocity detuning. 

This dynamical system has the integrable Hamiltonian 

H ( X ,  Y )  = io(X2 + Y2) - S(X’ + Y2)2 - x (3.7) 

which also arises in other nonlinear problems such as Duffing’s oscillator (Jordan & 
Smith 1986). We merely recall that the fixed points X , ,  Y, of (3.4), (3.5) are given by 
the solutions of 

Y. = 0, -ox* + x: + 1 = 0. (3-8) 
In general there are three fixed points which correspond to the intersections of the 
two curves 21 = -aX+X3 and Z2 = -1 in the plane of 2 versus X. There are three 
solutions if o > 3/4’13 = 1.89, one if o < 3/4lI3 and two if a = 3/4Ij3. This is shown 
in figure 1, where 2 1  is plotted for two values of a, 2.5 and -1. The Jacobian of the 
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FIGURE 1. Graphical determination of the fixed points of system (3.4) and (3.5). Filled circles 
denote the stable fixed points, and the open circle the unstable fixed point. 

system (3.4) and (3.5) at the fixed points is 

The eigenvalues are 

By examining dZl/dX at the intersections in figure 1, we deduce that if (i > 3/41/3, 
two fixed points c1 and c2 are centres, and the third ( s  with the largest positive X )  is 
a saddle, while if (T < 3/41/3 the only fixed point c1 is a centre. 

In a small neighbourhood of the centres the angular frequency 52 of the oscillation 
does not depend on the distance from the centre and is given by 

which is a function of 0. A sample phase plane for (i = 2.5 (figure 2a) shows the two 
centres c1 and c2 separated by the manifolds of the saddle s (trajectories are the level 
curves of the Hamiltonian). Homoclinic bifurcation occurs at (T = 3/4l/’: c1 and s 
coalesce, as shown in the phase plane of figure 2(b). For a sample degenerate case of 
(T = -1, the phase plane with just one center is displayed in figure 2(c). 

The bifurcation diagram is shown in figure 3. 
At bifurcation we have 

3 bI2 2 3(1+ 2cosh2khj + 
sinh4kh 

= (T { 4cosh2kh [ cosh2kh 
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2 0 2 4 -4 -2 

X 
0 2 4 

x 

7 

-4 -2 0 2 4 
X 

FIGURE 2. Phase-plane samples for system (3.4) and (3.5). (a) G = 2.5, three fixed points; 
(6) r~ = 3/4'/3 = 1.89 at bifurcation, one fixed point aiid a cusp; (c )  G = -1, one fixed point. 

which defines a curve in the plane of U2 / U0b"/' us. kh, displayed in figure 4: 
this curve separates two regions where the solution can be respectively triple- or 
single-valued. For very long wavelength or shallow water ( k k l ) ,  the solution is 
never triple-valued near resonance, while for short wavelength or deep water (kh+ 1) 
bifurcation happens at U = Uo (i.e. U2 = 0). 

The physical meaning of various fixed points and phase portraits is as follows. 
For n > 3/413 there are two stable steady states represented by c1 and c2. The state 
represented by c2 corresponds to waves over antidunes; the surface wave and bed 
wave are in phase. The state represented by cl corresponds to waves over dunes; the 
free surface and bed waves arc opposite in phase. For n < 3/4'/' we can only have 
waves over dunes. Thus the linc separating dunes from antidune regimes is different 
from the linear theory (cr = 0). Unless the initial state coincides with a fixed point, 
the free surface wave envelope must be periodic in time. For (r > 3/4'/', two periodic 
states are possible, one an antidune wave and one a dune wave; their occurrence as 
well as their amplitude depend on the initial conditions. Sample time series of various 
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4 

2 

X O  

-2 

-4 
-4 -2 0 2 4 

0 

FIGURE 3. Bifurcation diagram for synchronous resonance, 

5 

4 

3 

kh 
2 

-4 -2 0 2 4 

Uli UObr2I3 

FIGURE 4. Stability diagram for synchronous resonance. Near resonance the solution is always 
single-valued in shallow water, and triple-valued in deep water. 

orbits are shown in figure 5(a, b, c) for a fixed value of o = 2.5 and various initial 
conditions (see also figure 2a). Figure 5(a) shows the periodic time series for an initial 
phase in the basin of c2. If the initial phase point is on the manifold of the saddle, 
the time series has a solitary hump: the time series shown in figure 5(b) corresponds 
to the homoclinic loop around c2. Figure 5(c) shows the more articulated time series 
for an orbit around c1 and close to the homoclinic loops: the flat parts correspond to 
the portions of the orbit which are close to the saddle point. 

3.2. 112 subharmonic resonance 

Equation (2.33) can be non-dimensionalized as follows : 

b’ = kb, (3.12) 
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2 

1 

x, Y 0 

-1 

-2 
0 2 4 6 8 10 

T 

Y 

0 2 4 6 8 10 
T 

8 

4 

x, Y 0 

4 

-8 
0 10 20 30 

T 

FIGURE 5. Sample time series for different initial conditions and o = 2.5. (a) X(0) = 0.9, Y ( 0 )  = 0: 
initial phase point is in the domain ofcz; (b)  X ( 0 )  = 1.33, Y ( 0 )  = 0.01, initial phase point is on the 
unstable manifold of the saddle s; (c) X ( 0 )  = 1.3, Y (0) = 0.1, initial phase point is near s; the orbit 
is around q. 

1 2 3( 1 + 2cosh2kh) 
16 [cosh’kh + sinh4kh 

1 
2sinh2kh 4 

-~ 

+ -(1 - 2sinh2kh)(tanhkh + A ’ = {  b’ , sinh2kh- . 1 

2sinh2kh)(tanhkh + (3.14) 

By separating the real and imaginary parts: A’ = X + iY, a second-order dynamical 
system is obtained from (2.33): 

XT=( l+B)Y - ( X 2 +  Y 2 ) Y ,  

Y T  = (1 - c ) X  + ( X 2  + Y2)X. 
(3.15) 
(3.16) 
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In this case the bifurcation parameter a is related to the velocity detuning by 

1 
2sinh2kh 4 

+ -(1 - 2sinh2kh)(tanhkh + 1 
f~ = { b’ [sinh 2kh + 

(3.17) 
\ I  

Equations (3.14) and (3.15) constitute an integrable Hamiltonian system with 

H ( X , Y ) =  $r(X2+Y2) - i(X2+Y2)2 + i(Y2-XZ ). (3.18) 

Although an implicit but exact solution is known (Hall & Seminara 1980), it is 
convenient to employ the phase plane analysis and examine the fixed points, defined by 

(3.19) 1 x, = 0, Y* = 0, for all f ~ ,  

x, = 0, 

x, = +(a - l ) l j 2 ,  

Y* = *(fJ + 1)”2 ,  

Y* = 0, 

fJ > -1, 

CJ > 1. 

Thus, there are five fixed points if f~ > 1, three if f~ E (-1,l) and one if CT < -1. 
Physically the first fixed point at the origin is the trivial state of flat free surface 
while the second pair with X, = 0, c+ and c-, are waves whose alternating crests and 
troughs lie above the troughs of the bed wave. Corresponding to the last pair with 
X ,  = ~ ( C T  - 1)1/2 and Y, = 0, s+ and s-, the free surface has its crests and troughs 
directly above the crests of the bed wave. 

The Jacobian at the origin is 

l + O  0 1 J =  11-. 
0 

L J 

so that its eigenvalues are: 
(3.20) 

The origin is therefore a saddle for a E (-1, l), and a centre for CT $ (-1,l). In the 
latter case the natural angular frequency of the oscillation around the origin is given 

Q G (-A&)’/* = (a2 - l)? (3.21) 

2 112 ill,2 = f(1- 0 ) . 

by 

The Jacobian at the symmetric fixed points c+ and c- on the Y-axis is 

with eigenvalues 

A1,2 = +2i(1+ a)”’. (3.22) 
Since they exist only for CT > -1, c+ and c- are always centres, and the linearized 
frequency of oscillation is 

m = (-42)1’2 = 2(1 + fJj1’2. (3.23) 

Finally for the symmetric fixed points s+ and s- on the X-axis, the Jacobian is 

and the eigenvalues are 
Al,’ = +2a’/2. (3.24) 
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Since S+ and s- exist for 0 > 1, they are always saddles. 
Figure 6 @) shows the phase plane for 0 = 2.0, when all five fixed points exist: 

three centres on the Y-  axis and two saddles on the X -  axis. Two heteroclinic orbits 
separate the basins of three centres. When (T decreases, s+ and s- move towards the 
origin (recall that X ,  = (0- 1)l~’~) and the size of the central basin around the origin 
itself decreases. For 0 = 1 they coalesce with the origin (homoclinic bifurcation), 
which then becomes unstable (saddle). The corresponding phase plane is displayed in 
figure 6(b)  (0 = 0). 

As 0 decreases further below zero, the two centres on the Y -  axis c+ and c- drift 
towards the origin (Y, = & ((T + l)1J’2) and eventually coalesce with the latter when 
G = -1. After this second homoclinic bifurcation, the centre at the origin remains to 
be the only fixed point; the corresponding phase plane is shown in figure 6(c). The 
bifurcation diagram is given in figure 7, where the origin is seen to be unstable when 
0 E (-1,l). The instability of the origin implies that small perturbations from the 
null solution give rise to finite-amplitude oscillations with the phase point tracing a 
periodic orbit around the two centres (see figure 6(b)). 

The two homoclinic bifurcations occur when 

2sinh2kh)(tanhkh + 1 

(3.25) 
which defines a relation between U2 / Uob’ and kh, displayed in figure 8. The two 
curves defined by (3.25) separate three regions of existence of the solutions. It can 
be deduced that for long wavelength (shallow water, kh4l), the null solution (fixed 
point at the origin) is always unstable, while for short waves (deep water, k h % l )  the 
null solution is always neutrally stable. 

In figure 9(a,b) we present some time series of the free surface wave. Figure 9(a) 
corresponds to one of the heteroclinic orbits for G = 2 connecting s- to s+ in the lower 
half-plane Y > 0 of figure 6(a). This transition implies a shift by one wavelength 
of the free surface wave. In figure 9(b) the periodic state oscillating around two 
amplitudes corresponds to the closed orbit just outside the saddle point of figure 6(b). 

4. Weakly oscillatory current 
Pure steadiness in U is an extreme idealization of nature. In reality U is more 

likely to be a complex function of different time and space scales. We now turn to 
the main objective of this paper and assume U to be close to the critical value but 
a slowly oscillating function of time about a steady mean: U = U(t2) in accordance 
with (2.11). With this choice the time derivative of U appears at 0(e4) and the 
evolution equation remains unchanged in form within the present degree of accuracy. 
Specifically we let U2 have a steady part and a sinusoidal part varying with t 2  

(4.1) 

where T is the dimensionless time normalized by (3.3) for synchronous resonance 
and by (3.14) for subharmonic resonance. The dimensionless frequency is o. The 
sinusoidal variation in (4.1) is of course a simplification of a transient current in 
nature which must require many more harmonics for a proper representation. 

U2 = U2 + U; COSU) T ,  
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FIGURE 8. Stability diagram for subharmonic resonance. The null solution is always unstable in 
shallow water, and stable in deep water. 
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FIGURE 9. Sample time series for different initial phase points and values of cr. (a) X(0) = -0.999, 
Y(0) FS 0.0001, on one heteroclinic connection between s- and s+ for cr = 2 ;  (b)  X ( 0 )  = 0.05, 
Y (0) = 0, near the origin for cr = 0. 

4.1. Synchronous resonance 
The system (3.4) and (3.5) is changed to 

XT =cJY - (X2+Y2)Y + p Y c o s w T ,  
Y, = --ox + ( X 2  + Y2)X + 1 - p x c o s w T ,  

with D given by (3.6), and p given by 

= { 4cosh2kh [ cosh2kh bR 2 3(1 + 2cosh2kh) + 
sinh4kh 
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i.e. 
0 u 

(4.4) 

Now r~ signifies the time-averaged velocity detuning, while the new parameter p 
signifies the amplitude of oscillatory detuning. Their dependence on the physical 
parameters kb and kh are the same. In particular they both increase from zero when 
kh = 0 to a finite limit for k h + l .  However they become unbounded as kb + 0, and 
approach zero for kb+ 1. 

The dynamical system (4.2), (4.3) is similar to that for a Duffing oscillator with a 
periodic restoring force and external forcing (Yagasaki et al. 1990, eq. (17)). Both 
systems are obtained through averaging over the fast time scale. The analogous 
forcing term in the averaged Duffing oscillator originates from the periodic restoring 
force term, assumed to have a long-period oscillation. By admitting a linear damping 
term, Yagasaki et al. (1990) employed Melnikov’s method to estimate the transition 
to global chaos through homoclinic tangles for initial conditions close to a saddle; the 
threshold however depends critically on the damping term. In the present problem, 
damping due to turbulence is far too complex to be satisfactorily modelled at present; 
only the frictionless system is considered here. 

Note first that by the transformation 

the dynamical system becomes 

x; =cr ’Y‘ - (x ’2+Y’2)Y‘+p’Y’coso ,  

p/x’ cos e, Y; = -0’x’ + (X’2 + Y’2)x’ + - - 1 
U W ’ / 2  

where 

(4.7) 

In the transformed system (4.6), (4.7) the effect of varying w is to change the 
amplitudes 0‘ and p’ and the abscissa of the fixed points of the autonomous limit, 
but not their qualitative variety. Therefore we shall take w = 1 in all subsequent 
examples; this implies a definite value of the dimensional frequency co* for given 
values of UO, kh, k ,  b according to (3.3) and (3.14). With this choice all dimensionless 
frequencies to be referred to later are frequency ratios relative to the frequency of 
current oscillation. 

We now discuss numerical experiments for the transient response of the non- 
autonomous system (4.2) and (4.3), for various amplitude of p and 0, as well as the 
initial states. The equations are integrated by a fourth-order Runge-Kutta scheme with 
adaptive stepsize control. Poincarit sections are obtained by sampling the trajectories 
at the time interval of 271, the normalized period of the current oscillation, and by 
projection of the intersection points on the ( X ,  Y)-plane. Each section is obtained by 
giving a finite number of initial conditions and integrating for a time T = 271 N ,  with 
N varying from 1000 to 2000. The entire phase plane is explored by giving a large 
number of initial phase points on the X-axis, with a very small increment (- 0.001) to 
reveal all the relevant structures. The evolution of the regular curves and the growth 
of the stochastic layers is then followed. In the unforced case p = 0, each closed 
trajectory is characterized by a natural frequency l2 around the centre. The closer the 
trajectory to the homoclinic loop, the lower the natural frequency (=0 for the loop 
itself). The highest frequency, given by (3.10), is achieved in a small neighbourhood 
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of the centre itself. Whenever Q = m / n  is a rational number different from unity, 
the Poincarb section of the unforced trajectory appears as a sequence of n points. 
The current oscillation excites temporal resonances at the m/n  ultrasubharmonic 
frequency. On the other hand, if S2 is an irrational number, the Poincari! section of 
the trajectory is a closed continuous curve, and if Q is far enough from a rational 
number, the closed curve will be preserved for small ,LI > 0 (KAM theorem). 

The most likely temporal resonances in a neighbourhood of the elliptic point of the 
unperturbed map can be forecast by a naive perturbation analysis. Let ,LI = vpl = O(v) 
with v 4 1 being an ordering parameter. Expanding around a centre (X*, 0) 

x = x* + vx1+ v2x, + v 3 x 3  + ...) 
v Y, + v2Y2 + v3Y3 + . . . , Y =  

we get from (4.2) and (4.3) at O(v): 

1 
XI ,  - -Y1 =o,  

X, 
Yi, - (3X: - CT) Xi = -pix* cos T ,  

which is a forced harmonic oscillator with the natural frequency given by (3.10). The 
first-order solution is therefore 

XI = X;,eInT + X.f,eLT + *, YI = y;el"T + yifelT + *, 
where the superscript n denotes natural mode response, and f the forced response. 
Clearly resonance occurs if 52 = f1. At the second order O(v2), the perturbation 
equations are 

1 
X, 

X2, - - Y2 = -2XSX1 Yi + ,LII Y1 cos T ,  

Y2, - (3X: - CT) X2 = 3X*X: + X, Y; - pixi cos T ,  

which is again a harmonic oscillator of natural frequency Q forced at the frequencies 
&2Q, f(Q +_ l), $2,0. Hence the second-order solution is of the form 

x2 = XilelQ' + xio + xl, el(Q-1)' + xf 22 e12Q' + X,f3eJ(Q+')T + xl4eL2' + *, 
y2 = YieJQT + yf + yfe4Q-1)T + yfe12QT + yfel(a+l)T + yf e12T + *, 

20 21 22 23 24 

At this order resonances occur when any of the forcing frequencies are equal to +Q, 
i.e. when SZ = 1/2,2. At the third order O(v3) 

1 x,, - x ,Y3  = - [2x* (X2YI + XlY2) + Y: + Y&] + p1 Y2 cos T - XIT*' 

Y3T - (3X.2 - a) X, = 6X*XiX2 + 2X* Y1 Y2 + X: + XI Y;L - , L I ~ X ~  cos T - Yi,, 

the quadratic and cubic terms on the right force oscillations at the natural frequency 
fS2 and at the following frequencies: +2Q, f352, f(S2 f 2), +(29 + l), +3, +1. At this 
order resonances occur if 51 = 1/3,1/2,2 and 3. Other ratios can be relevant if the 
perturbation analysis is carried to higher order, implying longer time for resonant 
growth. As usual, the secular terms can be eliminated by a multiple-scale analysis 
for uniform validity in time. While this is not pursued here, the recognition of 
these temporal resonances facilitates the understanding of the numerical results to 
be discussed next. Note that the frequency ratios for these temporal resonances 
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estimated by a third-order analysis are the same as the wavelength ratio of the spatial 
resonances due to the waviness of the bed. 

Note that the system (4.3) and (4.4) has a time-varying Hamiltonian, 

H ( X ,  Y,  T )  = i a (X2  + Y2)  - i ( X z  + Y2)* - X  + i p ( X 2  + Y2)c0s T .  (4.9) 

According to the theory of Hamiltonian systems, one should expect regions of 
stochasticity in the Poincard section confined by invariant KAM curves; the latter are 
curves on which, in the unforced integrable case, the frequency ratio is ‘sufficiently’ 
irrational to allow the curve to be preserved for small perturbation from integrability. 
In particular, as p increases from 0, regions of stochasticity first appear near the 
hyperbolic fixed points of the unperturbed (i.e. p = 0) Poincard map; their size 
also increases so that finally neighbouring KAM curves are destroyed. It is known 
that these regions are generated by transversal intersections (homoclinic tangle) of 
the stable and unstable manifolds of the above hyperbolic fixed points. There 
are other regions of stochasticity which arise for increasing p. According to the 
PoincarbBirkhoff theorem (Lichtenberg & Liebermann 1992, p. 183), if a closed 
curve surrounding an elliptic fixed point has a rational rotation number, say, m/n,  at 
least two n cycles of alternating n hyperbolic and n elliptic fixed points are expected to 
develop when p > 0. To the present accuracy, transversal intersection of the manifolds 
of the n hyperbolic points generates stochastic layers which surround the islands of 
regular motion around each of the n elliptic points (which form an n-island chain). 
When p increases from zero, the first regions of stochasticity to appear are those for 
low values of n. The cycles for large n are of very small extent, therefore difficult to 
detect. More complexity is added to the picture if we consider the nth Poincare map, 
obtained by sampling the trajectories after every time interval of 2zn. A point of the 
nth elliptic cycle becomes an elliptic fixed point of the latter map, therefore all of the 
above structure repeats itself around it : stochastic layers surrounding island chains 
confined by regular KAM curves. This hierarchical structure repeats itself indefinitely. 
For small p each island chain and associated stochastic layer are confined between 
KAM curves. Transition to global stochasticity occurs for values of p such that 
neighbouring stochastic layers overlap and destroy the separating KAM curves. It is 
of interest to find the value of p beyond which the Poincard map has no more fixed 
points, and the whole Poincard section is fully stochastic (complete stochasticity). We 
now examine numerically the development of these events. 

We first fix the value of (r to 2.5 and increase p from 0. The Poincare map of the 
autonomous system has two elliptic and one hyperbolic fixed points (whose nature 
and coordinate are the same as c1, cz and s of figure 2a). By Melnikov’s method 
one can show that the condition for the onset of homoclinic tangle is simply p > 0, 
since there is no damping. Therefore a stochastic layer first appears in the O(p) 
neighbourhhood of the hyperbolic fixed point of the Poincare map. This can be 
seen in figure lO(a) computed for p = 0.01. The stochastic layer is confined between 
three KAM curves which surround the two elliptic points of the map. Most of the 
trajectories are still regular, i.e. they lie on a torus. To the left and to the right 
of the smaller loop of the tangle, two new islands can be seen. The island on the 
left, 11, is clearly visible, while the island on the right, I,, is ‘compressed’ between 
adjacent invariant curves (not shown for clarity); corresponding to each of the new 
islands there is one hyperbolic point. I I  is a synchronous resonance 52 = 1, while I, 
is an ultraharmonic resonance SZ = 2, as was verified by taking a Poincare section 
sampled at time intervals equal to instead of 2.n in which 11 then appears as a 
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two-island chain, while I ,  remains unchanged. This can be further understood if we 
note (from (3.10)) that for (T = 2.5 the linearized frequency of oscillation around c2 of 
figure 2(a) is D = 2.1. Because the frequency of the homoclinic loop is zero, between 
the centre and the homoclinic orbit there must be an orbits with angular frequencies 
D = 2, 1, 1/2, 1/3, etc., which are subject to resonance when forced at w = 1. Clearly, 
among these the frequency s2 = 2 is the closest to 52 = 2.1 at which island chains are 
expected to emerge, according to the Poincare-Birkhoff theorem. The frequencies 1/2 
and 1/3 are close enough to that of the homoclinic orbit, so that homoclinic tangles 
quickly create stochastic layers to overwhelm details at the threshold of resonance. 
On the other hand, the linearized frequency of oscillation around c1 of figure 2(a) 
is D = 1.95, hence a one-island chain must be the result of D = 1 resonance. It is 
around 11 that a hierarchy of higher-order islands and stochastic layers will emerge 
when p further increases. At p = 0.02 the size of the stochastic region thickens, as seen 
in figure 10(b). There is now a richer structure with secondary resonances around 
this primary island. Secondary island chains with associated stochastic layers are 
revealed by a magnification of the section as shown in figure 1O(c). As a whole, the 
region of stochasticity is still a small fraction of the region occupied by regular curves 
(figure lob). The growth of the stochastic layers continues as p is increased. When 
p = 0.1 the region of stochasticity has grown considerably at the expense of I ! ,  as 
shown in figure 10(dj. As the parameter p increases further, the stochastic sea further 
expands. Figure 10(e) shows the Poincare section for p = 0.5. The stochastic region 
has swallowed the two regular regions of figure 10(d) and encloses the crescent-like 
region of regular motion. Transition to global stochasticity is approaching. The 
disappearance of the crescent-like region of regular motion, with the destruction of 
its last KAM curve, happens for values of p fi: 2.3. Any initial conditions inside the 
stochastic region give rise to successive intersections which wander in the stochastic 
region, getting arbitrarily close to any given point (the trajectories are dense). A 
Poincark section for p = 2.25 is shown in figure lO( f ) .  The region of stochasticity is 
now circular and dense, and is bounded by an external KAM curve. The remnant 
of the above crescent-like region is a tiny island around X - -2.65, Y - 0 which 
disappears for p > 2.3. 

The transition to chaos can be alternatively displayed via the power spectra of 
a trajectory. For several different initial conditions we have examined the spectral 
evolution for given o and increasing values of p. As an example let us consider 
the initial condition with (X(O), Y(0)) = (0.4, 0) which is very close to c2, and for 
o = 2.5. For p = 0.01, figure ll(a) shows that the dominant frequency is the natural 
s2 = 2.1, in agreement with the perturbation analysis. Note the spectral peaks not 
only at the forcing frequency CIJ = 1, but also at Q -t 1 and 2s2. For larger values of 
p ,  an increasing number of harmonics appears in the spectrum. In figure l l ( b )  for 
p = 0.1, we observe peaks at D +_ 2, 2 and 3. From this state of quasi-periodicity, 
transition to chaos occurs for larger values of p. At p = 0.5, the spectrum of 
figure 1l(c) is broad-banded implying chaos. Referring to figure 10, we see that for 
p = 0.01 and 0.1 the chosen initial conditions fall in the region of regular motion 
(see figure load), while for p = 0.5 they fall in the stochastic layer (see figure 10e). 
This pattern of evolution is typical. Indeed, for any D and p, if the initial phase 
point lies outside the stochastic layer, the corresponding spectrum is composed of 
lines (natural, forcing and their interacting harmonics) as in figure ll(a,bj; on the 
other hand, if the initial phase point lies in the stochastic layer, the spectrum is 
similar to figure ll(cj. In the following we shall only discuss our results by using the 
PoincarC map. 



Free surface waves in a current over a sinusoidal bottom 397 

2 -  - 2 -  

1 -  1 -  

Y 0 -  0 -  

-1 - -1 - 

-2 - -2 - . 1 

t I 

1.10 

0.95 

Y 

0.80 

0.65 
10 1.15 1.20 1.25 1.30 

3 - 2  1 0  1 2  3 
x 

J 

-4 
-4 -2 0 2 4 

x 
FIGURE 10. Poincare sections for CT = 2.5 and increasing values of p. (a) p = 0.01; ( h )  p = 0.02; 

(c) p = 0.02, magnification of secondary islands; ( d )  ,u = 0.1; ( e )  p = 0.5; v) ,u = 2.25. 



398 P. Sammarco, C. C. Mei and K.  Trulsen 

10 

10 

Angular frequency (rad SK') 

100, . I ' I ' I ' 1 

1o-l'I . I . I . I I I 
0 2 4 6 8 

Angular frequency (rad SS') 

10-4 

lo-* t 
10-12 

0 2 4 6 8 
Angular frequency (rad s-') 

FIGURE 11. Power spectra for fixed initial condition (X(O) ,  Y ( 0 ) )  = (0.4, 0) and increasing 
values of p. (a) p = 0.01; (b)  p = 0.1; ( c )  p = 0.5. 

We now consider CT < 3/4'13, for which the autonomous system has only one 
elliptic fixed point (cl in figure 2c). For p > 0 the elliptic point of the Poincarb map 
is at a distance O ( p )  from the original centre for zero oscillatory current. Having no 
hyperbolic fixed points for p = 0, there is no homoclinic tangle for very small p. Only 
for larger values of p can stochastic layers appear. Below, we follow the development 
for CT = -1 and increasing values of p .  In figure 12(a) the PoincarC section for p = 0.1 
is shown. One elliptic and one hyperbolic point are born in an anulus between two 
KAM curves. The new elliptic point c3 is an ultraharmonic l2 = 2 resonance, which 
can be expected since for this CT (and p = 0) the linearized frequency of oscillation 
around c1 is 52 = 1.8742, according to (3.10), and the frequency of large orbits is 
greater. The map has now two elliptic points and one hyperbolic point; no stochastic 
layers have yet developed. As p increases to 0.3 (figure 12b) the island around c3 
becomes larger and is squeezed against neighbouring KAM curves. For p = 0.4 the 
manifolds of the hyperbolic point s tangle and give rise to a stochastic layer, shown 
in figure 12(c) for ,u = 0.5. Now the whole section strongly resembles figure 10(b,e) 
for CT > 3/41/3. If we further increase ,u the Poincard section becomes more complex. 
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In figure 12(d) for p = 0.7 the region of regular motion is still crescent-like. The 
elliptic point and associated region of regular motion encircled by the stochastic layer 
for p = 0.5 (seen in figure 12c) have now disappeared. The magnified structure of 
the island chains is shown in figure 12(e); second-order island chains and associated 
stochastic layers are seen around each point of the first-order chains. Thesc primary 
island chains are all ultrasubharmonic temporal resonances, since 52 > 1 everywhere 
in the section. The disappearance of the crescent-like region of regular motion takes 
place at p w 1.39. Note that the final form of the stochastic layer is independent of 
the value of 0, i.e. of the number and nature of the fixed points of the unperturbed 
Poincari map. 

Comparing the two cases with 0: 3/41/3, we see that for smaller 101, chaos begins 
at a larger p. For further confirmation, we have pcrformed a computation for 0 = 0; 
indeed the start of local chaos, still triggered by the tangle of the manifolds of the 
52 = 2 resonance, occurs at the intermediate value of p x. 0.29. 

4.2. 1 /2 subharmonic resonance 
The system (3.15), (3.16) is changed to 

XT = (1 + O)Y - ( X 2  + Y*)Y  + pY coscc,T, (4.10) 
YT = ( 1 - a ) X + ( X 2 + Y 2 ) X - p X c 0 s u T ,  (4.11) 

with 0 still given by (3.14) but p by 
-I 

+ -(1 1 - 2sinh2kh)(tanhkh + L)] } ci, (4.12) 
1 

2sinh2kh 4 tanh2kh uo 
i.e. Q / U ~  = p / U i .  Note again that both cr and p have the same dependence on the 
physical parameters kb and kh. In particular both are decreasing functions of kb and 
increasing functions of kh. As kh increases from 0 to infinity, 0 and p rise from 0 
to finite limits. For small kb, (r and p are unbounded but approach finite limits for 

By the same transformation of variables (4.5) and the same redefinition of param- 
kb9.l. 

eters (4.8), the preceding system can be rewritten as 

x: =(a + a’) Y ’ - (x’2 + Y /2) Y ’ + p(  Y cos 8, 

0’)XI + (X’* + Y ’?)XI - p’x’ cos 8. 
1 

r , ’ = c a -  

(4.13) 

(4.14) 

Again the effect of u is to change the location of the fixed points of the autonomous 
system, without changing the variety. Below, we shall take o = 1 as being represen- 
tative. 

For p > 0, the system (4.10), (4.1 1)  possesses a time-dependent Hamiltonian: 

1 1 1 
2 2 2 

H ( X ,  Y ,  T )  = - C ( X ~ + Y ~ ) - ~ ( X ~ + Y * ) ~ + - O ( Y * - X ~ ) + - ~ U ( X * + Y ~ ) C O S  7 (4.15) 

and is no longer integrable. 
Recall that in the autonomous limit, the unforced system has one centre if (T < -1, 

two if -1 < 0 < 1 and three if cr > 1. We now follow the transition to global 
stochasticity for three values of and increasing p.  For reference we have used the 
naive perturbation analysis similar to that in 54.1, and shown that around the origin 
where the natural frequency of a small closed orbit is given by (3.21), temporal 
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FIGtJRE 12. Poincark sections for B = -1.0 and increasing values of p. (a )  p = 0.1; ( b )  p = 0.3; 
( c )  p = 0.5; (d )  p = 0.7; ( e )  p = 0.7, magnification showing secondary islands; (f) p = 1.7. 
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FIGURE 13. Poincark sections for g = 2.0 and increasing values of p .  (a )  ,u = 0.3; ( b )  p = 0.6; 
(c) /f = 1.5. 
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resonance does not occur at O(v); instead it happens at O ( v 2 )  if Q = 1/2, and at 
(I($) if SZ = 1, 1/3. On the other hand around a centre on the y-axis where the 
natural frequency of a small closed orbit is given by (3.23), temporal resonances can 
be forced at O(v) if f2 = 1, at O(v2) if f2 = 1/2, 2 and at O ( v 3 )  if L2 = 1/3, 3 

We first consider D = 2. In this case the natural frequency around the origin is 
52 = 1.73, according to (3.21). Corresponding to the other two centres on the Y-axis, 
we find 52 = 3.46, according to (3.23). For y = 0.3 the section of figure 13(a) shows 
a two-island chain around the origin, which is the result of an Q = 1/2 resonance 
appearing first (at O ( v 2 ) )  according to the perturbation theory. The expected 52 = 1 
resonance at O ( v 3 )  is obliterated by the rapid growth of the stochastic layer. Around 
the other two centres on the Y-axis two one-island chains are developed as a result 
of an f2 = 3 resonance; the other one-island chains (Q = 1 and Q = 2 resonance) 
are swallowed in the stochastic layer for smaller values of p. When y = 0.6 the 
islands corresponding to the Q = 2 resonances have grown considerably in size. They 
are shown in figure 13(h), together with the corresponding hyperbolic points, which 
are about to tangle. At large enough p the regular region around the centre at the 
origin disappears. Figure 13(c) shows the Poincark section for p = 1.5 where the 
regions of regular motion have reduced to two tiny islands, which disappear for 
p = 1.6. 

When o = 0 (no steady detuning, i.e. the detuning is purely oscillatory) the 
unperturbed system has two elliptic and one hyperbolic fixed points. Around the 
two elliptic points the natural frequency is 52 = 2, hence resonance occurs in a 
neighbourhood of these points. We also expect to detect an Q = 1 resonance. In 
figure 14(a) the Poincari section for y = 0.003 is shown. The motion is mostly regular, 
except for the eight-shaped stochastic layer originated by the tangle of the manifolds 
of the hyperbolic point. In the picture the two synchronous Q = 1 resonances are 
visible near the origin. Figure 14(b) shows the section for p = 1.5, when there are no 
more islands and the motion is completely stochastic. 

Finally we consider o = -2 for which the unforced system has only one elliptic 
fixed point at the orgin. Again, the natural frequency increases as we leave the origin. 
According to (3.21), the linearized frequency about the origin is 52 = 1.73, implying 
that when p > 0 the first chain to be detected will be the one originated from the 
trajectory with Q = 2. Indeed two elliptic, c+ and c-, and two hyperbolic, s+ and 
s-, fixed points are born, and they are compressed between two KAM curves in 
figure lS(a) for p = 0.5. No stochastic layers have developed as yet. Note that the 
two new elliptic points do not constitute a two-island chain. If the initial condition 
is given around one of the elliptic point, successive intersections remain in its own 
basin, describing either a regular curve or a secondary island chain. Figure 15(b) 
shows a sample section for p = 0.7. The regions of stochasticity are still undetectable, 
but the two regions around c+ and c- have grown in size. For a larger p (y = 0.9) 
the section reveals all the complex structure developed by the tangle of the manifolds 
of s+ and s-, resembling the results for o > 1, and showing the island chains 
evolving near the borders of the regular regions (figure 1.5~). Increasing the valuc 
of p causes transition to total stochasticity. The three regions of regular motion 
gradually reduce in size but new island chains are developed at every boundary 
between regular and stochastic regions. Particularly complex are the Venetian mask- 
like regions in figure 15(d) for p = 1.1. In figure 15(e) the section is magnified to 
reveal the secondary four-island chain around c+ and the stochastic layer generated 
by the tangles from the four hyperbolic points. Further, tertiary six-island chains 
are around each of the four elliptic points. Figure 1S(f) shows the section for 
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p = 1.7: the internal regions of regular motion have disappeared, and two small 
islands still remain near the outer KAM curve. Note that the final stochastic state is 
almost the same as that for = 2. The difference is that for CT < -1, i.e. for lower 
mean speed of the current, the number of hyperbolic points in the original unforced 
system is zero; tangling of manifolds begins at larger p after hyperbolic points are 
formed. 

5 .  Concluding remarks 
In this paper we have studied the effect of nonlinearity on the free surface wave 

resonated by a steady or neariy steady current over a wavy bed. Resonance of surface 
waves of a given length is shown to be possible over bed waves with synchronous, 
subharmonic, or ultraharmonic wavelengths. The instability of the nonlinear wave 
on the free surface is studied by deducing the evolution equations without viscosity. 
When the current is strictly steady, the possible nonlinear steady states and their 
stability are studied as a function of the velocity detuning parameter CT. Triggered 
by instability, different transient but regular nonlinear states are found for different 
ranges of CT. 

We have further examined the effect of a time-harmonic perturbation in the 
resonating current. The qualitative consequence is shown to be dramatically different 
from the strictly steady case because the non-integrable Hamiltonian system may 
yield chaos in the manner predicted qualitatively by KAM and the Poincark-Birkhoff 
theorem. The dependence on the strength of the oscillatory current, represented by 
the parameter p, for several typical values of CT representing different regimes of 
steady detuning have been studied numerically in detail. Bifurcation thresholds are 
identified with both synchronous and superharmonic resonances, by numerical and 
analytical means through a simple perturbation analysis. While sufficiently large p 
always leads to global stochasticity, there are similarities as well as differences in the 
details of transition to chaos. If the current involves more harmonics the chaotic 
response must be more complex. 

As cited in the Introduction, the problem of waves induced by a current over wavy 
boundaries is of broad interest. Thus far all existing studies have been for inviscid 
fluids. On the same basis we have examined the consequence of unsteadiness in 
the current. Of course many factors existing in nature can further complicate the 
physics. For instance, qualitative as well as quantitative changes can be expected 
when dissipation is considered in the flow. For this purpose the primary flow must be 
sheared, and turbulence must be accounted for over the wavy bed. Of possible interest 
is the flow over a large but finite number of dunes in a river affected by weak tides. 
The slow spatial variation of the bed amplitude must affect the free surface wave, 
whose space-time evolution must then be studied by the nonlinear cubic Schrodinger 
equation derived in 9 2. For a current with a small oscillatory component the 
Schrodinger equation must have slowly time-varying harmonic coefficients; spatial 
and temporal chaos must occur as shown in a similar study by Naciri & Mei (1992) 
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